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BAYES’ RULE: p(x|Z) = g(x)h(Z|x)/K 
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(1) The physical cause of late time cosmic acceleration is the cooling 
of the cosmos in our Bayesian theory. 

(2) Bayesian theory is in excellent agreement with cosmological data 
(and it agrees exactly with Friedmann matter dominated early cosmos 
for large z) using only one free parameter. 

(3) No need for cosmological constant in general relativity, and hence 
no need for dark energy or 54 to 122 orders of magnitude discrepancy 
between cosmological data vs. quantum field theory. 

(4) Related (but very different) theories by Jacobson (1995), Verlinde 
(2010),  Padmanabhan (2010) & Smoot et al. (2010) using entropy & 
the Unruh effect but no use of Bayes’ rule. 

(5) More accurate cosmological data are needed to falsify these 
theories, and such experiments are planned. 

(6) Maybe the Gauss law of particle flow is related to ‘t Hooft’s 
holographic principle via the Gauss theorem?  
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“ ‘Most embarrassing 

observation in physics’ – that’s 

the  only quick thing I can say 

about dark energy that’s also 

true.”        Edward Witten 

393
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g/cm  10theory 
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“Something is clearly  

    seriously wrong.” 

      Roger Penrose 



Easson, Frampton & Smoot, “entropic accelerating universe,” 
October 2010. 





THEORY FITS 

DATA? 

NUMBER OF 

FREE 

PARAMETERS? 

IDEA NEEDS  

DARK ENERGY TO 

EXPLAIN  

COSMIC 

ACCELERATION 

NEGATIVE 

ENERGY? 

OR NEGATIVE 

TEMPERATURE? 

OR UNSTABLE? 

RELATIVISTIC

? 

1. Einstein (1916) yes* at least 3 or 4 equivalence principle & 

Riemannian space-time 

& Newtonian weak field 

limit 

yes no yes 

2. Dicke-Brans     

(1961) 

yes* at least 4 or 5 non-constant G & 

Mach’s principle 

yes no yes 

3. Milgrom (1983) no 3 per galaxy ad hoc lower limit 

 on Newton’s gravity 

yes no no 

4. Beckenstein & 

Sanders (2004) 

no many extra scalar & vector 

fields 

yes yes no 

5. Moffat (1995 & 

2004 & 2009) 

yes! at least 8 asymmetric metric 

tensor & extra fields 

no no yes 

6. Jacobson (1995) yes zero entropic force & Unruh 

effect 

no yes ? yes 

7. Padmanabhan 

(2010) 

yes zero max entropy & Unruh 

effect 

no yes ? yes 

8. Verlinde (2010) yes zero holographic principle, 

entropic force & Unruh 

effect 

no yes yes 

9. Easson, Frampton 

& Smoot (2010) 

yes zero entropic force & Unruh 

effect 

no ? yes 

10. Daum (2011) yes one Bayes’ rule no no no 



(1) Sanjoy Mitter & Nigel Newton, “information and 
entropy flow in Kalman-Bucy filter,” 2004. 

(2) Sean Carroll, et al., “the Bayesian 2nd law of 
thermodynamics,” August 2015. 

(3) Hrant Gharibyan & Max Tegmark, “sharpening the 
2nd law of thermodynamics with the quantum Bayes 
theorem,” Physics Rev E, 2014. 

(4) Jonathan Heckman, “statistical inference and string 
theory,” July 2013. 

(5) Brad Chase, “parameter estimation, model 
reduction and quantum filtering,” thesis 2009. 

(6) Mankei Tsang, “Ziv-Zakai error bounds for 
quantum parameter estimation,” 2012. 

Bayesian physics 



reference comments 

1. Roger Balian, et al., “lectures on 
dynamical models for quantum 
measurements” June 2014. 

derivation of Born rule from a dynamical model of coupled 
macroscopic system with quantum system; solution of the so-
called “measurement problem” by using standard probability 
theory (for the joint system with non-equilibrium quantum 
thermodynamics) 

2. Klaus Hornberger, “introduction to 
decoherence theory,” 2009. 

concrete explicit physical examples of quantum master 
equation; excellent tutorial 

3. Bengt Svensson, “A pedagogical review 
of quantum measurement theory,” 
Quanta May 2013. 

derivation of quantum master equation with explicit 
measurement model (double bracket form) like Zakai 
equation in nonlinear filter theory; also derivation of the 
Leggett-Garg inequality with weak measurements 

4. Kurt Jacobs and Daniel Steck, “a 
straightforward introduction to 
continuous quantum measurement,” 
contemporary physics, 2006. 

accessible tutorial on continuous time quantum 
measurements, with a derivation of the stochastic master 
equation conditioned on measurements 

5. Mankei Tsang, “time-symmetric 
quantum theory of smoothing,” 2009. 

derivation of quantum Zakai equation for smoothing 
assuming weak measurements & linear-Gaussian problem 

6. Mankei Tsang, “Ziv-Zakai error 
bounds for quantum parameter 
estimation,” 2012. 

generalized Cramér-Rao bound & Heisenberg uncertainty 
principle for repeated noisy quantum measurements 

7. “quantum theory & measurement,” 
edited by Wheeler & Zurek, 1983. 

ancient history (collection of classic papers on the so-called 
“quantum measurement problem” up to 1983) 



reference comments 

8. Brad Chase, “parameter estimation, model 
reduction and quantum filtering,” doctoral thesis 
on quantum filtering (December 2009) 

simple concrete physical examples of quantum 
filters, with MATLAB simulation results for 
quantum Kalman filters & quantum particle 
filters; very accessible. 

9. Carlos Brasil et al., “a simple derivation of the 
Lindblad equation” 2012. 

nice simple tutorial on Lindblad operator for 
quantum filtering 

10. Philip Pearle, “simple derivation of the 
Lindblad equation” [sic] 2012. 

nice simple tutorial on Lindblad operator 

11. Adler & Bassi, “collapse models with non-
white noise” 2007 

simple derivation of Lindblad equation from 
stochastic Schrödinger equation using Ito 
calculus 

12. Attal & Pelligrini, “stochastic master equation 
in thermal environment” 2008 

how to model non-zero temperature in 
Schrödinger equations (this is crucial) 

13. Justin Dressel, “weak values are interference 
phenomena” 2014 

nice physical explanation of anomalous values of 
probabilities 

14. Leslie Ballentine, “quantum mechanics: a 
modern development” 2015 [sic] 

extremely clear mathematical discussion of 
entanglement & erroneous notions, as well as 
alternative (but not popular) developments of 
quantum mechanics 



OLD QM NEW QM 

1. measurements collapse of the wave 
function (instantaneous) 

continuous time using 
Schrödinger-Zakai 
equation 

2. model of macroscopic 
measurement of 
quantum system 

no explicit model explicit model in 
Schrödinger-Zakai 
equation 
(Lindblad operator) 

3. connection between 
quantum mechanics & 
probability 

Born rule Bayes’ rule 

4. uncertainty bounds for 
quantum mechanics 

Heisenberg uncertainty 
principle 

Cramér-Rao-Heisenberg 
& Ziv-Zakai-Heisenberg 
bounds 

5. entanglement & 
decoherence 

paradoxes & confusion 
& counterintuitive 
notions 

explicit equations 
derived from math & 
physics 

6. propagation of 
wavefunction 

unitary without 
measurements & Born’s 
rule for measurements 

non-unitary for 
measurements & unitary 
without measurements 
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item Bayesian big bang Einstein’s general theory 
of relativity 

1. agrees with 
experimental data? 

YES YES 

2. postulates existence of 
dark energy? 

NO YES 

3. depends on 
thermodynamics of 
cosmos and quantum 
mechanics? 

YES NO* 

4. explains big bang? YES NO 

5. coordinate free? NO but not needed for 
cosmology 

YES 

6. relativistic? NO but not needed for 
cosmology 

YES 

7. consistent with QFT? YES NO 

8. measurement model 
using Bayes’ rule? 

YES NO 

9. theory of gravity? NO YES 

10. theory of everything? NO NO 



- Lemets, O.A.  & D.A. Yerokhin  “Cosmic acceleration a new review”  Dec 
2010       arXiv:1012.2756 [astro-ph.CO]  

http://inspirehep.net/author/profile/Lemets, O.A.?recid=880988&ln=en
http://inspirehep.net/author/profile/Lemets, O.A.?recid=880988&ln=en
http://inspirehep.net/author/profile/Yerokhin, D.A.?recid=880988&ln=en
http://inspirehep.net/author/profile/Yerokhin, D.A.?recid=880988&ln=en
http://inspirehep.net/author/profile/Yerokhin, D.A.?recid=880988&ln=en










http://www.astro.washington.edu/users/bastidas/entropy/budget_entropy.bmp
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Initial uncertainty

This can be fixed by putting a 
limit on the maximum speed of 

particles. 
Does this remind you of 

anything in physics? 













incompressible 
flow 

irrotational flow 
Coulomb’s law 

flow 
small curvature 

flow 

Gaussian densities exponential family 

Fourier transform 
flow 

constant 
curvature flows 

(e.g. zero) 

Knothe-Rosenblatt 
flow 

non-zero diffusion 
flow 

method of 
characteristics 

geodesic  

flows 

stabilized  

flows 

finite dimensional 
flow 

direct integration 
optimal Monge-

Kantorovich 
transports 

Gibbs sampler like 
flow (inspired by 
direct integration) 

non-singular 
Jacobian flow 

(inspired by proof) 

renormalization 
group flow for log 
K(λ) inspired by 

QFT 

renormalization 
group flow for log 

g(x) inspired by 
QFT 

maximum entropy 
flow 

exponential family 
with non-zero 

diffusion 

Moser coupling 
flow 

suboptimal Monge-
Kantorovich 

renormalization 
group flow for 

logK(λ) and log g(x) 
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pdf pdf

particles particles
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physicist math tool physics  

Kepler ellipse & logarithms Kepler’s orbital laws 

Fermat geometry & algebra Fermat’s principle in optics 

Newton calculus & geometry mechanics 

Euler & Lagrange PDEs Euler-Lagrange eqs  

& fluid mechanics 

Hamilton PDEs Hamiltonian mechanics 

Maxwell, Gauss, et al. PDEs Maxwell’s eqs 

Boltzmann PDEs statistical mechanics 

Einstein & Hilbert Riemannian geometry & 

calculus of variations 

general relativity 

Schrödinger & Dirac PDEs Schrödinger & Dirac equations 

Feynman & Dyson Feynman path integral QED 

Yang & Mills gauge transformations Yang-Mills eq 

Weinberg, Glashow & 

Salam 

Lie algebras unification of E & M and weak 

force 

Witten, et al. super Lie algebras supersymmetry & string theory 

--- transport theory Bayesian quantum gravity 


